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AN ALGORITHM FOR EVALUATION 
OF DISCRETE LOGARITHMS IN SOME 

NONPRIME FINITE FIELDS 

IGOR A. SEMAEV 

ABSTRACT. In this paper we propose an algorithm for evaluation of logarithms 
in the finite fields Fpn, where the number pn - 1 has a small primitive fac- 
tor r. The heuristic estimate of the complexity of the algorithm is equal to 
exp((c + o(1))(logpr log2 r)1/3), where n grows to oo, and p is limited by a 
polynomial in n. The evaluation of logarithms is founded on a new congru- 
ence of the kind of D. Coppersmith, C(X)k = D(x), which has a great deal of 
solutions pairs of polynomials C(x), D(x) of small degrees. 

INTRODUCTION 

Let oa be a fixed primitive element of the finite field Fq. The discrete logarithm 
problem in the finite field consists in an effective solution of the equation 

(1) oax = 1 

with respect to x, with a known Q E Fq. Breaking a number of systems of pub- 
lic cryptography comes to evaluation of discrete logarithms [1]. There is a vast 
literature on this subject. We note only those works which are important for our 
considerations. For recent developments and other references see [7]. A method 
for solving equation (1) whose complexity is proportional to sr112, where s is the 
number of prime divisors of q - 1 and r is the largest prime divisor of q - 1, is 
proposed in Pohlig and Hellman [2]. In 1979 Adleman [3] proposed an algorithm 
for evaluation of logarithms for the case when q is a prime number; its running time 
is estimated by the value 

(2) exp( (c + o(1)) (log q log log q) 1 /2) 

with q -0 oc. Later this method was adapted to fields of characteristic 2, i.e., for 
q = 2n [4]. The estimate (2) is equally valid in the case when q = pn and the number 
p is bounded by a polynomial in n as n -* oc. The growth of the value (2) as q -* oc 
is of subexponential character, i.e., the Adleman method is substantially superior 
to the method of the work [2]. We describe briefly the Adleman algorithm for the 
case of the field F2n. Let P(x) be a primitive polynomial of degree n over F2. At 
the first stage we find logarithms of the field F2n whose elements modulo P(x) are 
polynomials of degree at most b (b is a parameter of the method). To this end, we 
try to express the residues xrn mod P(x) as products of irreducible polynomials of 
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degree at most b with random integer m. Each factorization of this kind produces a 
linear equation mod 2' - 1 with respect to unknown logarithms. We must produce 
a sufficient number of such equations and then solve this set of equations. In order 
to find a logarithm of a fixed element B(x) mod P(x) of the field F2n, one has to 
obtain at least one factorization of a residue of the type B(x)xm mod P(x) into the 
product of polynomials of degree at.most b. Unlike the method of Pohlig-Hellman, 
the Adleman algorithm is not deterministic, and the estimation of its complexity 
is the expected value of a random variable, the running time of the method. 

In 1984 an article of Coppersmith [5] in which an algorithm for evaluation of 
logarithms in the fields F2n was proposed, was published in IEEE Transactions on 
Information Theory. The asymptotic running time of the Coppersmith algorithm 
equals 

(3) exp((c + o(1))(n log2 n) 13) 

as n -* oo. It is obvious that with q = 2' and n -* oo the function under the 
exponential in (2) increases much faster than that in the estimate of Coppersmith. 
This means that Coppersmith's method is much more efficient than the Adleman 
algorithm. 

We review the Coppersmith algorithm. It differs from Adleman's method in 
more efficient production of linear relations between logarithms of elements of the 
field F2n, with irreducible polynomials of low degrees being their inverse images in 
the ring F2 [x]. In this case the author substantially uses the fact that the field F2n 

has nontrivial automorphisms. Let P(x) = xn + Q(x) be an irreducible polynomial 
over F2 of degree n, with Q(x) being some polynomial of degree at most n2/3. Let 
qj(x), 1 < j < Nb, be irreducible polynomials of degree at most b = cl(n log2 n)1/3 
with c1 a constant and log a natural logarithm. At the first stage we must find 
logarithms of the elements of F2n that are the residues qj (x), 1 < j < Nb. Let us 
take the integer d approximately equal to c2 (n2 log n)!3, where c2 is a constant. 
It is shown in the Coppersmith article that there exist 22d+1 pairs of polynomials 
C(x), D(x) of degree at most (nd)1/2 that satisfy the congruence 

(4) C(x)k D(x) (mod P(x)), 

with k being a suitable power 2. If the polynomials C(x), D(x) are factorized 
in the product of irreducible polynomials qj (x), 1 < j < Nb, then one obtains a 
linear equation modulo 2n _ 1 for logarithms of the elements of the field F2n that 
are the residues qj(x)(mod P(x)). We look through suitable pairs of polynomials 
C(x),D(x) until we have a system of linear equations that is sufficient for the 
evaluation of logarithms of the elements qj(x)(modP(x)). This system may be 
solved, for example, using the Gauss method. 

Let 1P(b, d) be the probability of the fact that a random polynomial of degree 
at most d is factorized in the product of irreducible polynomials of degree at most 
b. One has to bear in mind two relations in order to make a selection of optimal 
parameters and produce an asymptotic estimation of the algorithm. First, one 
should have a sufficient number of pairs of polynomials C(x), D(x) of degree at 
most (nd)1/2 that satisfy the congruence (4) for producing a sufficient number of 
linear relations. Thus 

(5) 22d+1 - (2b+?l/bp2(b, (nd) 1/2). 

Second, one should minimize the complexity of this stage. To this end, the com- 
plexity of producing linear relations and the complexity of solving this system must 
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be the same. Thus, 

(6) 2b?l/b'p2(b, (nd) 1/2) ,(2b+l/b)3. 

Relations (5) and (6) allow us to calculate the constants c1 and c2. In this way 
we will find the complexity of evaluating logarithms of irreducible polynomials of 
lower degrees which is expressed by (3) with c = 1.52. 

Coppersmith showed further how to calculate the logarithms of a random element 
of the field. His method consists in a successive expression of an unknown logarithm 
in terms of logarithms of polynomials of lesser degrees. Solutions of bounded degrees 
of the congruence (4) are also used in this method. The parameters of this procedure 
are chosen in such a way that its complexity should be of the kind (3) with c < 1. 
Thus the congruence (4) with many solutions pairs of polynomials C(x), D(x) of 
bounded degrees is the central element of the Coppersmith method. 

Is it possible to find an algorithm similar to Coppersmith's for the field F2n in 
other finite fields Fpn? Prime fields do not have nontrivial automorphisms. Let us 
review more thoroughly the congruence (4) in the case of the field Fpn: 

(7) (xhA(x) + B(x)) k -xhk-nQ(x)A(xk) + B(Xk) (mod P(x)). 

In this congruence h, k are the parameters of the method and the degree of the 
polynomials A(x) and B(x) is bounded by d. The number k is a power of the 
characteristic p; we assume that the value p also grows as n -* oo. Then, generally 
speaking, the residue modulo P(x) of the polynomial on the right side of (7) behaves 
as a random polynomial reduced modulo P(x). Due to this fact, the use of the 
congruence (7) for producing linear relations d6es not make sense. However, if p 
grows very slowly in comparison with n, then the evaluation of logarithms in the 
field Fpn using the Coppersmith method is somewhat more rapid that the evaluation 
by the Adleman method. 

In this paper we propose two new congruences of the kind of Coppersmith's (4). 
These congruences are used for evaluation of logarithms in the finite fields Fpn, 
where r = 2n + 1 is a prime number and the multiplicative order of p modulo r 
equals 2n or n (n is odd), or the number pn - 1 has a small primitive factor r. 
The asymptotic running time for these fields is similar to that of Coppersmith and 
equals 

(8) exp((c + o(1)) (logpr log2r)1/3), 

where the value of p is bounded by a polynomial in n as n -* oo. 

1. 

Let us consider the case of the field Fpn, where r = 2n + 1 is a prime and the 
multiplicative order of p modulo r equals 2n or n (n is odd). Under these conditions 
we describe a new method for obtaining linear relations, which is different from the 
Coppersmith method. 

Let 0 be a root of the polynomial (xr - 1)/(x - 1) over Fp. This polynomial 
is irreducible if the prime p is a primitive root of unity modulo r. The elements 
0) 2)..., 02n form a normal basis of the field Fp2n over Fp. It is obvious that the 
traces in Fpn of the elements of this basis form a normal basis of the field Fp. over 
Fp. Thus, 
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are linearly independent over Fp and are connected by the relations r1i = TIP where 
pl'i i(mod r). Suppose that the order of p modulo r equals n, and n is odd. Then 
the elements (9) also form a normal basis of the field Fpn over Fp, for which we 
have the relations r1i = TP, where pWi _ i or -i(modr). 

In any case, Fpn = Fp(T11). Let Pi (x) denote an irreducible polynomial of degree 
n over Fp, where the element Ti, is-a root. Prom the form of the elements of the 
basis (9) we have the following relations: 

T= T2 + 2, 

7i?1=7i1? + 7Ii+1, 2 < i < n-l 

7ln 71 = 7ln + 7ln-1. 

Hence it is clear that r1i = bi/(r11), 1 < i < n - 1, where Tni(x) is a polynomial of 
degree i. The polynomials fji (x) satisfy the recurrence relation 

(10) /i+1 (x) = Xbi (x) - i- (X) 

with the initial conditions +1t(x) = x, f/o(x) = 2. The polynomials fb(x), 1 < i < 
n - 1, are all the roots of Pi(x) modulo Pi(x). It is easy to check from the form of 
these roots (9) that modulo P1 (x) the sequence of polynomials 

bi (x), i =O,l,1.... 

is periodic with period r = 2n + 1. In this case the following congruence holds: 

( 1 ) f ~~n+i+l (X) --n-i (X) (mod Pi (x)). 

Lemma 1. For 1 < i < n the following identity is true: 

(12) On -i (x) (/i (x) - 4'i-(x) + + (-1)')On/(X) (mod Pi (x)). 

Proof. It follows from (10) that 

P)n+l (X) = X+bn (X) n- 1 (X) (mod Pi (x)), 

and from (11) we have 

n n+l (X)- ~n (X) (mod Pi (x)). 

Therefore, 

V)n-l(X)-(X - 1>)Vn(x) (+bl(X) - 1>)Vn(X) (modPi(x)). 

Thus, the identity (12) is valid for i = 1. Suppose that the assertion is valid for 
1 < i < k. We shall prove it for i = k. We have the congruences: 

f n-k (X) -1) (X)7l)n-k+l (X) - On-k+2 (X) 

- (l1(X)(V)k-l(X) - Vk-2(X) + * ? (_1)k1) 

-(bk-2(X) - Pk-3(X) + *** + (-1)k2 ))On(X) 

(Oik (X) + fbk-2(X) - gk-1(X) - bk-3 (X) +?** 

+ (-I)k-2(+b2(X) + 2) + (-1)k?/ ,li(x) 

- ?k-2(X) + VPk-3(X) 
_ * - (_1)k-2 )On (x) 

(V)k(X) - k1(X) ?*** ? (-1)k)pn(x) (modPi(x)). 

The lemma is proved. D 
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Now let Po = 1 and 

(pi = VM(X) - i_i(x) +.. + (-l)i 1 < i < n. 

Then the congruence of Lemma 1 holds: 

O)n-i(X) -i(p(X)bn(X), 0 < i < n, 

where 0i(x) is a polynomial of degree i. 
We consider the action of the group of automorphisms of the field Fpn on the 

elements of the normal basis (9). If p"i _ i or -i (mod r), 1 < i < n, then 

(+k (X))k) -P _ki (X) (mod Pi (x)). 

Theorem 1. Suppose that the inequalities n/(s + 1) < d < n/(s - 1) and the 
congruences k = p's _ s or -s(mod r) and I = p'n _ n or -n(mod r) hold for the 
numbers 1 < s, d < n. Then the congruence 

(13) C(X)k- x1D(x) (mod Pi (x)) 

has at least (pm+l - l)/(p - 1) solutions which are pairs of polynomials C(x), D(x) 
of degree at most d, where m = [d - n/s + d/s]. We do not distinguish between 
those pairs of polynomials that can be obtained from each other by multiplication by 
a constant from F*. 

Proof. It is easy to check that if the inequalities d - m < i < d are valid, then 
under the conditions of the theorem the inequalities 

n - d < si < n + d>+ 1 

hold. Therefore, if d - m < i < d and si = n-ki or n + ki + 1, then the congruences 

(0pi (X) )P -)i (X)- =n (X) (PkX(X) (mod Pi (x)), 

where ki < d, are true. We multiply this congruence by ci E Fp and sum up over i 
in the interval [d - m, d]. Considering that 

)n (X)-- Xl (mod Pi (x)), 

we have the congruence 

/d pvs d 

E ci Vi (X)) _X E CiPkj(X), 

i=d-m i=d-m 

where on the left side in parentheses and on the right side for the second factor we 
have the polynomials of degree at most d. Thus, we obtain at least (pm, 1 (p-1) 
desired solutions of the congruence (13). The theorem is proved. D 

The use of the solutions of the congruence (13) for evaluation of logarithms in 
the fields is similar to that in the method of Coppersmith. The analysis of the 
complexity is also similar, and so we will discuss this briefly. The algorithm has 
two parameters b and d. These are the limits of the degrees of the irreducible 
polynomials whose logarithms are calculated at the first stage and the degrees of 
the polynomials C(x), D(x), solutions of the congruence (13). Let 

d = cl (n2 log n)/3 b = c2 (n log2 n)113 

where c1, c2 are some values independent of n. Let the relations d = [n/s] and 
n/(s + 1) < d < n/(s - 1) be valid; then one can use the result of Theorem 1. Thus, 
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the congruence (13) has at least (pm+1-1)/(p-1), m = [d-n/s+d/s], solutions- 
pairs of polynomials of degrees at most d. It is evident from the conditions for s that 
one can believe that s = c71 (n/log n) 1/3 and m = c2 (n log2 n) 1/3. The following 
two relations are similar to (5) and (6): 

(14) ptm rpb+l/bP(b, d)2, 

(15) pb+l/bP(b d)2 , (pb+l/b)w. 

The value of w is determined by the method of solution of the corresponding sys- 
tem of linear equations. Suppose that w = 3. In the paper [4] one can find the 
asymptotic value of the number of binary polynomials of degrees at most d, all 
irreducible factors of which are of degrees at most b. If the numbers d and b satisfy 
the relations d? < b < d", then it may be assumed from the above that 

1P(b, d) = exp(-(1 + o(l))db-1 log db-1). 

When these polynomials are taken modulo p, the same result is true if the value 
of p is bounded by a polynomial in d. The proof of this proposition coincides with 
the proof given in the paper by Odlyzko, with the exception of minor details. 

From (14) and (15) we obtain two relations for cl and c2, once the parameters 
b and d are expressed in terms of n. We find c2 = (4w/9(w - 1)2 log2 p)1/3. Thus, 
the complexity of the evaluation of the logarithms of polynomials of small degrees 
is estimated by the value 

exp((c + o(1))(logpn log2 n)1/3), 

where c = (4w/9(w - 1)2)1/3, n -4 oo, and the prime p is bounded by a polynomial 
in n. The complexity of the evaluation of the logarithm of a random polynomial 
does not exceed the value (8). 

For example, we review the evaluation of logarithms in the field of order 223. We 
note that 2 .23 + 1 = 47 is a prime, and the multiplicative order of 2 modulo 47 is 
equal to 23. We will produce a system of linear equations with respect to logarithms 
of those elements of the field that modulo Pi (x) are irreducible polynomials of 
degrees at most b = 4. Let 

t= log(x) = 1, 

t2 = log(x + 1), 

t3 = log(x2 + x +1), 

t4 = log(x3 + x + 1), 

t5 = log(x3 +x2 +1), 

t6 = log(x4 + x3?+ x2 + x + 1), 

t7 = log(x4 + x3 +1) 

t8 = log(x4 + x + 1). 

Let d = 10 and s = 3; then 219 = 3 (mod47), and we can produce the congruence 
(13) where k = 219, 1 = 222 and 

C(x) = c0b6 + C1/7 + C2+/8 + C3/9 + C4+1O, 

D(x) = C005 + C1(P2 + C2(p0 + C33 + C4(P6, 
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where 

g6 = X6 +x2 W5 = X5 +X4 +2 +?x+ 

b7 = X7 +5 + XI W2 = X2 + X + 
~b7 =x ?X ?X, P=X ??1 

f8=X8, ,p~So=l, 

+b9 = X9 + X7 + X5 + (X, 3 = X3 + x2 + 

io = X 10 +x6 X2I W6 = X6 +X5 +X4 +X+ 

Then, we define the pairs of polynomials C(x), D(x) all irreducible factors of which 
are of degrees at most 4. In order to produce these pairs, one should look through 
all the values of ci, i = 0, 4. For example, 

CO =, Cl = 1, C2 = C3 = C4 = 0, 

C(X) = 07 = X7 + x5 + x = x(x3 + x2 + 1)2 

D(x)= 92 = X2 +X + 1, 

C(x)2'9 _ x222D(x) implies 219 (t1 + 2t5) = 222t1 + t3. 

Similarly, 

2 22t, = 222t,,. 

219(2t, + 2t5) = 222t1 + t1 + 2t2 + t3, 

219 (tl + t2 + t3 + t7) = 222tl+ tl + t2, 

219(t1 + t2 + 2t5) = 222t1 + t3 + t4, 

219(t1 + 2t2 + 2t4) = 222t, + t5, 

219(t? + 2t2 + t3 + t7) = 222t? + t? + t2 + t4, 

9 - 219t1 = 222t, + t1 + 2t2, 

219 (t1 + t6 + t8) = 222t1 + 2tl + t2, 

219(8t1 + t2) = 222t1 + t4, 

219 (2t, + t2 + t3 + t7) = 222t1 + 2t1 + 3t2, 

10 * 219t1 = 222t1 + 2t1 + 4t2, 

219(t, + t2 + t6 + t8) = 222t1 + 2t1 + t2 + t4, 

219(2t1 + 2t2 + 2t4) = 222t1 + t1 + 2t2 + t5, 

219(8t, + 2t2) = 222t1 + 2t4, 

219(9t, + t2) = 222ti + ti + 2t2 + t4, 

219(t1 + 3t2 + 2t4) = 222t1 + t4 + t5, 

219(2t1 + t6 + t8) = 222t1 + 3t1 + 3t2, 

219(8t, + t3) = 222t1 + t3 + t7. 
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After some calculation we have 

t2= 4 456 447, 

t3= 4 194 559, 

t4 = 8 142 847, 
t5 = 4 196 351, 

t6 + t8 = 4 194 335, 

t7 = 3 931920. 

It happens that t6 and t8 are not determined individually, since they occur in the 
combination t6 + t8. We attribute this phenomenon to some fine properties of the 
sequence Vi/(x) modulo qi (x) = x4 + X3 + X2 + x + 1 and q2(X) = X4 + x + 1. Let 
Oj be a root of the polynomial U2 + xjU + 1, where xj is a root of qj (x). Then 

O' + 0) = fb (x) (mod qj (x)). 

Since 017 = 1, j = 1, 2, in analogy with (11) we have 

+i (X) =--+8-i (x) (mod qj (x)). 

Thus ?P9+i+??8-i is divisible by both qi and q2. The only combinations of V6, Vb7,.... 
+bjo divisible by qi or q2 are linear combinations of Vb9 + Vb8 and 10o + 07; therefore, 
if t8 appears, so does t6, and vice versa. 

Generally speaking, let Tq be the period of a root of the polynomial U2 + xU + 1, 
where x is a root of the irreducible polynomial q(x) of degree s < b. Then Tq 
divides pS - 1 or pS + 1. In our example p = 2, s = 4 and Tqj = 17. Consequently, 

PTq -i (X) -i (x) (mod q(x)). 

The product of the polynomials q such that Tq = T, divides )T-i- i. Hence 
their logarithms occur together on the left side of the relations produced from (13), 
where 

C(X) - E Ci(+bT-i- i) 

The sum is over all i such that d - m < T - i i < d. It can disrupt the expected 
frequency of the relations. However, it becomes highly improbable as p grows to oo 
no more slowly than d. 

2. 

In this section we study the case of the fields Fpn where pf - 1 has a small factor 
r that does not divide numbers pS - 1, s < n. 

Let r denote a factor of pn - 1 that satisfies the following condition: there is 
an element ( E Fq such that (r = 1 and Fp () = Fq. By Zsigmond's theorem 
there is a prime number r that satisfies the above condition, except for p = 2 and 
n = 6. We would like to find the least r of this kind. Let P2(x) be an irreducible 
polynomial over Fp with ( as a root. The values d and b are the parameters of the 
algorithm. Suppose that d = cl(r2 log r)1/3 and b = C2 (r2 log r)1/3, where c1 and 
C2 are independent of the value of r. 

Let u denote the residue mod r of a power of the characteristic p, that is, u = 

ps(modr). Let 0 < hi, ki < d, 1 < i < Tu be all the pairs of the least nonnegative 
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residues modulo r that satisfy the congruence hiu ki (mod r). Then for ai E Fp, 
1 < i < Tu, we have the following congruence: 

(16) C(x)P =_ D(x) (mod P2(x)), 

where C(x) = ETi1 aixhi, D(x) = ETu? aix ki are polynomials of degrees at most 
d. The congruence (16) is similar to the congruences (4), (13). We shall use 
solutions of this congruence for the logarithms of the elements of the field Fq that 
are irreducible polynomials of degrees at most b modulo P2 (x). The number of the 
pairs of polynomials 0(x), D(x) of degrees at most d solutions of the congruence 
(16) is at least (pTu - 1)/(p - 1). The following theorem was proved in the work 
[6] by the author. 

Theorem 2. Let d/(r2 log log r)1/3 -* oo. Then Tu = d2 (1 + o(1)) for almost all 
residues u modulo r. 

We find the complexity of the evaluation of the logarithms of irreducible poly- 
nomials of small degrees. The following relations are similar to (14), (15): 

(pd2/r _ l)/(p - 1) _ pb+l/bp(d, b)2) 

pb+l1bp(d, b)2 _ (pb+l/b)W 

Simple calculations show that the complexity of this stage of the algorithm does 
not exceed 

(17) exp((c + o(1))(logp r log2_r)1/3), 

where c = (4w4/9(w - 1)2)1/3. 
The value (17) is also an estimate of the complexity of the evaluation of loga- 

rithms in the subfields of the field Fpn. We shall show that in some cases one can 
evaluate the logarithms with complexity less than (17). Let r be a factor of pn - 1 
for which one can find an element c E Fpn such that (r = 1 and Fpn =Fp(Q). 

Lemma. Let Fp ( + (-1) = Fpn. Then n, = n or ni = n/2. 

Proof. Let (i + (-i = T.i The element Ti, is a root of an irreducible polynomial 
P3(x) over Fp of degree n1. Consider the equality 

T11 =n71, or + 

for some s < n. After evident transformations we have (P +1 = 1. Hence ps 

-1 (mod r). By assumption, n is the least number that satisfies the congruence 
pn-- 1 (mod r). Therefore, n divides 2s. Thus, n1 is equal to n or n/2. The lemma 
is proved. ? 

We note that the identity 1iT1 = Tjj+j + 7ij-1 holds. Hence the element r1i can 
be represented as a polynomial in TI, of degree i. Thus r1i = V/i(TI). Suppose that 
for numbers s, h, k we have the congruence hps -k (mod r). Then we have the 
identity: 

/)h(Tll)f = Vsk(T(1) 

or the congruence 
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Moreover, the congruence (18) remains valid if hps -k (mod r). Let hi, ki, 
1 < i < T', be all the pairs of numbers that satisfy the conditions 

0 < hi, tkil < d, hiu= ki (modr). 

Let u be a residue modulo r of some power of p, that is, u _ ps (mod r). We 
introduce the following notation: 

T., T., 

c(x) = ai)hi (x), D(x) - ZaiPI ki (), ai E Fp. 
i=l i=l 

The polynomials C(x), D(x) are of degrees at most d, and they satisfy the congru- 
ence 

(19) C(x)P =_ D(x) (mod P3(x)). 

The number of pairs of polynomials C(x), D(x) of degrees at most d that satisfy 
(19) is at least 

( P )/ (p -1). 

By Theorem 2, Tu = 2d2 (1+o(1)) for almost all u as r -oo and d/(r2loglog r)1/3-* 
00. 

The solutions of the congruence (19) of bounded degrees are used for the evalu- 
ation of logarithms in the field Fpn,, like the solutions of (16) are used for this in 
the field Fpn. It is easy to show that the complexity of evaluation of logarithms in 
this field is at most 

exp((c + o(1))(logpr log2 r)1/3)) 

where c = (2w4/9(w - 1)2)1/3. 

We compare the algorithms of Sections 1 and 2. A. N. Lebedev noticed that the 
congruence (13) can be extended to the case of the field Fpnl which we discuss 
in Section 2. However, in this case we have r > 2n + 1, and the congruence 
pU's =_s (modr) may have no solution for vs, where s is the optimal value of the 
parameter of our algorithm. 

Consider the field Fpn where 2n + 1 = r is a prime, and the multiplicative order 
of p modulo r is equal to 2n or n (n is odd). Then r is a primitive prime factor of 
p2nl_ 1 or pn - 1. Thus, if ( is a primitive root of unity of degree r, then 7r = + -1 
generates Fpn over Fp. Therefore, we can use the argument of Section 2 to produce 
a system of linear equations. For instance, we can find a nontrivial u _ ps (mod r), 
such that the number Tu of solutions of the congruence hu k (mod r), where 
O < h, tkl < d, is the greatest. It should be noted that for almost all residues u we 
have Tu - m, where r, d -* oo, as in the assertion of Theorem 2. Therefore, the two 
methods give the same estimate for the complexity of the evaluation of logarithms 
in the field Fpn. 

It should be noted that all asymptotic estimates produced in this paper are based 
on the assumption that the polynomials C(x) and D(x) in the congruences (13), 
(16) are random and independent from the point of view of factorization in the 
product of polynomials of small degrees. This fact should be verified by a theory 
or by an experiment. 

Thanks to an anonymous referee for his criticisms and to an anonymous editor 
of my English. 
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